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Optimal control syrtemm containing a small parameter which cart be called weakly controlled 

rryotemo are considered. A procedure for the approximate solntions of problema of this class 
is described. A variational problem on the attainment of maximam gliding range by a craft 
with aerodynamic controla in the atmoapberc is solved OS an example. The results obtained 
are in good egeement with the exact numerical solution. 

1. Formalotiom of the problem. Let the controlled process be described by a 
system of differential equation8 with the initial conditions 

dx / dt = f (x, t, u), x (to) = a (1.1) 
Here L is the time, r = (xt ,..., x, 1 is the n-dimcneional pbaae coordinate vector, u = 6~ t, 

..,, u,) ia the m-dimensional vector of the controlling functiona, f- (ft ,,.., f,) is a given 

n-dimensional vector function, to is the initial instant, and a is the vector of the initial 

phase state. The conditions at the end of the process and the functional I to be minimized 
are given in the form 

h (3 (T), T) = 0, q (3: (T), T) = if, J =F(s(T), T) (1.2) 

Here h(x, t) and F (x, t) are given scalar functions; g(z, t) = (qt,..., q,) is a given r-dim- 

enaional vector function, 0 ,< r ( a - 1. The first Eq. of (1.2) is the condition which defines 

the instant T of termination of the process. We aaaume that the function II depends monoton- 
oully on t (over aome time interval) for the permissible trajectories z(t), and that the condi- 
tion h I 0 definem a aniqae inetuxt T for each permissible trajectory. The second (vector) 
equation of (1.2) imposes additional boundary conditions at the instant T (if r = 0, these con- 
ditions are lacking). All theme conditions are asmmed to be independent and noncontradio 
tory. 

Oar problem consists in determining the optimal control u(t) and the corresponding opti- 
mal trajectory x(t) which for to<: 6 7’ aatflrfy Eqa. and conditions (1.1) and (1.2) as well 
u tbe remtrfctions on the control a(t) E u, and which minimize the functional I. Here U ie 
a given closed aet in m-dimensional apace. 

Let am introduce the additional phase coordinates x,, and x,+, subject to the equations 
and initial conditiona 

dzoldt = fas al+1 I dt = 2, RJ (to) = 0, zn+1 (to) = to 

fo=T =~+(~,f) 
Here md below d/d% is the gradient operator over the phase coordinates x; d/d: ia the 

total derhative along the trajectode~ of system (1.1); the parentbenem denote acAr products. 
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It i8 clear that xs+t I I, ao that the argument I of the functions f. fo, B, q, sad F an be 
replaced by X, + t, which makes the system self-contained. Fonctional (1.2) then takes the 

form I = x(i(Tf. 
Let us apply the maximum principle [l] to the problem just formulated. introducing the 

vector of conjugate variables $(t) = ($, ,..., qn 1 and the conjogate variables $, + #) and 
$,(t), we assume, a8 nsoel, that $, 3 - 1. The Hamiltonian ff ’ and the conjogate equations 

for systems (1.1) and (1.3) become 

H’ = (*v ff + *ntr - fo=(~--F/h f)+%+r--F/at (4.4) 

d’h as aF --=- 
dt= ibk 9 --t af ax ihk 

(k ~1,. . .#a) 

With allowance for boundary conditions (1.2) (the instant of termination of the process 
has not been fixed), we cau write the transversality conditions in the form 

Here x and A, are constant parameters. Let us substitute Conditions (1.5) into Eq. (I.41 

for H’ and then solve the latter for h; 

for t = T (f.6) 

The total derivatives have the same meaning here as in Eq. (1.3). We now introduce the 

notation 

P=$- aFlax, H = (p, f) = H' -Iprc+l + aF / at, P = @I,..., A,) (1.7) 

The expression in square brackets in (1.4) is equal to d#F/8xkl/dt. Eqs. (1.4) and coo- 

ditions (1.5) with allowance for (1.7) can be written as 

dpk af ( 1 af3 
r=- Pq&- =-69 H = (P, f) 

for t= T 

i=l 
(f 4 

By applying the maximum principle we have reduced the optimaI control problem to a 

boundary value problem for the two n-dimensional vector functions x(t) and p(r). The control 
u(t) can be found from the supremum condition for the function H’with respect to P. This 
is equivalent to the supremum of the function H from (1.81, i.e. to 

(1.9) 
The system of equations of the boundary value problem consists of Eqa. (1.1) and il.81, 

and the boundary conditions of Eqs. (Ll), (1.2) and (1.8). The control s can be eliminated 
by means of Eq. (1.9). 

The parameter h is defined by Eq. (1.6); the instant 2’ and the parameters 4 are unknown 
and most be determined in the course of solving the problem. 

Let US expand the functions f, h, 9, and F and the vector a in series in the small parame- 
ter 8, 

f = p (t, t) + Ef’ (2, t, ?A) + ..*, h = ho (r, t) + eh’ (2, t) +-.. 

Q = $ b, t) + eq’ (z, t) + **a, F = F” (z, t) + eF’ (x, t) + .a. 
a = a* + ed + . . . @=@) (1 AO) 

The auperecripts in all cases denote the number of terma in the expansions; the snb- 
scripts denote the number of vector components. Since the function f does not depend on u 
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for I I 0, qotetu (1.1) is nncontrollsd when B = 0. We will ~aume that ita general solution 
ia known. It Is mtsrd to oall system (1.1) for 0 < 8 < 1 a “weakly controIIed’;system. In 
the next section wo shall construct an approximate solution of the above optimal control 

problem for a weakly controlled ayatem. 
If the function f0dependa on u, then the system doss not degenerate into ti ancontrol- 

led ayotem for 8 - 0 and there generally exists an optimal control of the zeroth approxima- 
tion. Expattaion ia the small parameter serves merely to refine this control, The came con- 
sidered in the present paper (where the syetem is uncontrolled for E = 0) is interesting in 
that the control in the zerotb approximation cannot be determined in principle. Au interme- 
diate case is also possible: this in where the function p depends only on certain compo- 
nenta of the vector of controlling functions. 

We note also tbat if the set U depends on z, t, and e, then in a number of cases it can 
be transformed into a coaatant eet by simple tr~sformatfon in the control space. The set Ii 
defined by the inequality Ia ,( C (x, t, e ) (where C is a known function), for example, can 
be tranmformed into the set ~‘1 \c 1 by means of the transformation II = Ce’. From now ou I 
we shall assume that the set U is constant. 

Neither the problems involved in constructing strict estimates of the error of the appro- 
ximate solution nor the existence and oniqueztess of this solution will be considered in the 
preuent paper. 

2. The approximate OOlrttiOn. We shall attempt to find the solution of the above 
preblam and the functional f for 8 < 1 in the form (2.2) 
2 = a+ (f) + exl (f) + . . . . p=pO(t) + q+(t) + . . . . T = To + eT’ il...’ 
A = ?u” + de’ + ...I 1Li = life + 81t1 + .+., J = Jo+ 8J1+ ,.. (i=i,...j-j_ 

Substituting Eqs. (2.1) and (1.10) into Eqs. (Ll), (1.2), (1.8), and (1.6) we expand the 
re&ting expressiona in series in 8 aud eqnate the coefficients of eo and et. In the 

xeroth approximation we have 

&9/f& = ffJ(z0, t), lo&J = 50, hO(ti(fro), T@)=O, q0(r@(10)* TO)=0 
JO = P(tO(TO), TO) (2.2) 

for t=!P(k=i,...,n) 

We al50 write out the equations of the first approximation for Eqs. (1.1) and (1.2) (we 
make use of relations (2.2) obtained above in constructing these equations), 

fn the fast three Eqs. of (2.3) all the functions of x and c ere taken for the dues x= 
- x0(P), t I To. 
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Now let us aualyse Eqm. (2.2) and (2.3). We assume the general solatfou for the zeroth- 

approximation system dr/dt - fO(x, t) of (2.2) to be known and to be given in the form 

3: = cp (6 4, cp = (IpIP... Q)n)* c = (Cl,..., c,) (2.4) 

Here Cp is a vector fnnction and c ia a vector of arbitrary constants. Solving Eqs. (2.4) 

for the constsnts c, we obtain 

g (5, 0 = c, (g = g,,..., &J (2.5) 
The functions gk are the independent first intcgrsla of the zcmth-approximation system. 

For the trajectory in the zero& approximation we have Cauchy problem (2.2) whose sol- 

ution can be expressed in terms of the functions q) and g introduced by way of Eqn. (2.4) 

and (2.51, 

zo (0 = cp (& c), c = g (a”, t) (2.6) 

The instant To of termination of tbe process and the functional I” in this eppmximation 

are gfven by the third and fifth Eqs. of (2.2). We shall assume that the fourth Eq. of (2.2), 

i.e. the boundary conditions q = 0, are fulfilled automatically in this approximation. This 
equation can be considered as an additional condition imposed on the function qob, t). 

Let us introduce the following n x n matrices: 

(2.7) 

Eqs. (2.4) sud (2.5) define transformations whfch transform the vector c into x, and vice- 

versa, Matrices (2.7) which are the Jacobi matrices for these mutually inverse trauaforma- 
tfons, are related to each other by the expression @ = G-1. The rank of both matrices is n. 

The fitnctian 9 satisfies linear homogeneous system (2.3). The corresponding homogo 

neoua system is a system in variations for zeroth-approximation system (2.2) satisfied by 
~9. As we how from the theory of differential equations, the matrix @ of (2.7) is the funda- 

mental matrix for the system in variations. Making une of thim fact, let us write out the 
general solution of iuhomogeneons system (2.3) by the ,metbod of variation of a&nary con- 

stants [zl, 

a? = <D(t, c) b + O((t, c) 5 CD-” (r, c) f’ (x0(r), r, u (r))dr 
te 

Determiuiug tbs vector b of arbitrary constants with the aid of initial condition (2.3) and 
making nse of the Eq. et- C, we obtain 

z* (0 = @(t, 4 G (&I, 4 a’ + CI, (t, c) 5 G (z, c) f’ (9’ (q, ‘s, ZJ (r)) dt (2.8) 

Let us also express 2” from the third Eq. of (2.3) aud then subs&ate it into the fourth 

Eq. of (2..3), 

I( a$’ 
- ‘) 39 (TQ)) + qi 8X ][~+(~,rD,l=[(~.r’(r~))+h’]x 

x[T+(Cj$,fQ)] (i=i,...,r) 

As is evident from (2.2), the vector p” satisfies the linsu homogeneous system conja- 
gate to the above system in variations. But theu, as we know [A, the fundamental matrices 
for this system is (Q)-t I’- C’, where the prime denotea the tratepomed matrix. Hertoe, the 

general solution of system (2.2) for p” (in vector aud scalar notation) is of the form 
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Here e is P vector of arbitrary constants. Substituting solution (2.10) into condition (2.2) 

for po and taking account of the Eq. (G’)-t = cb ‘, we obtain 

Now let us determine the control in the firer approximation (the system is uncontrolled 
in the zerotb approximation). Substituting expansions (1.101 and (2.1) into the function H 
from (1.81, we expand thi@ function in a series in tt , 

fl = (p, f) - (P”, f0 ( so1 9 + e [(PO, jj z 9’) + (P’, I” (zO* t,) f 

The three dots denote terms of order higher than the first. Of the terms written out above 
only the last depends on u. Hence, the determination of the maximum of H with respect to 
u reduces in the first approximation to tbe maximization of this last term, i.e. to 

@” (a, f’ ww,‘~, u (~))) = SUP DO, f’ (ZO (Q, t, U)) (UE U) (2.12) 

Tbe control u(t) defined by relation (2.12) need not lie close to the control optimal in 
the metric sense in the space of C (i.e. with respect to the maximum of the difference modu- 
lus). However, this control will be approximately optimal in the eenae of the functional to 
be minimized. In fact, tbe familiar formulas for the first variation of the functional [3] imply 
that the functionals for two different controls differ by an amount of the same order as the 
functiona H for theee controla. But if condition (2.12) is fulfilled, the function H for the con- 
trol u(t) will differ from the m&mum of tbe function H attained in choosing the optimal COW 

trol by an amount of the same order as the rejected tennm, i.e. by an amount on the order of 
e2. The difference with respect to the functional between the approximate nud optimal cou- 
trols will be of the same order of magnitude. The difference in norm between these controls 

in the apace L,, i.e. tbe mean-square error, will uaoully be on the order of 8. 

We note that in accordance with (2.12) the control u(t) depends only on the solutions 
x0(r) end pa(t) of the zeroth approximation. Substituting in solution (2.101, we can rewrite 

condition (2.121 as 

“7 aR 
A I t (G’s, f’f = i,& +rr ( ( )I t, U) -+SUp with renpect to u E U (2.13) 

The resulting relations enable us to obtain en approximate solution of the optimal control 
problem under investigation. Here the trajectory x(t) as well as the instant 2’ and the fun0 
tional ] will be determined in the fir& approximation (with allowance for two terms in expan- 
sions (2.11, Le. to within -8’ 1; the conjugate variables p(r) and the constants X and h, 

will be found in the zeroth approximation. The mbnsqnent terma of expxnaionr (2.1) are 
too mall to be of much interest. 

Finding the npproximatc l olntion involves the following steps: 
1. Finding tbe general solution of the zerotb-approximation qntem, i.e. finding the 

functions Cp, g of (2.4) mtd (2.5) end the matrices #, C of (2.7). 
2. In tbe zer 0th approximation tbc trajectory fi (8) im defined by Eqr. (2.6). The instant 

7’0 and the fnnctional 10 ue defined by the third ard fifth Eqm. of (2.2). The fonrth Eq. of 

(2.21 is assumed to be fnlfilled by hypotbesk 
3. The function p(t) is defined by Eqe. (210) md tlte vector l by Eq. (2.11) into which 

we mast mbotitute he from (2.2). The ri#t tdmm of Eqm. (2.11) md (2.2) maat be taken for 
x - x”(l”‘?, t - To. Thus, Eqs. (2.101, (211). aad (2.2) dofin@ the fnnction p@(r) to within t 
ubitruy constants Ato which will be datermined below. 

4. SobAtuting zo(t) and p P(t) into condition (212) or (2.18) and compatiag the ~upremum 
with respect to Y, we obtain the control u(t) aloo to within t n&town constanta Ato* 
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5. We substitute no(t) and z&1 into Eq. (2.8) and find xt(tf, and in particular ztlT”), to 

within the ,same constants. 
6. We then substitute t = TO, x = x0(P) and the resulting value into relations (2.9). 

This yields r algebraic (generally nonlinear) equations for the constants A? appearing in 
xt(Tu). Solving these equations (we assume that a solution exists). we find the constants 

h,u. The functions putt), u(t), xl(t) and the constant ho determined in Steps 3 to 5 have now 

been determined completely. 
7. The corrections Tt for the instant of process termination and It for the functional 

can be found consecutively from the third and fifth Eqs. of (2.3) by substituting in them the 

already known values of x = x”(To), t = To, and %t(TO). 

Let us consider the solution of our problem for the case where the boundary conditions 
p = 0 (except the condition h = 0 which serves to define the instant of termination of the 
process) are lacking at the end of the process. In this case the dimensionality r of the vec- 

tor p of (1.2) is zero, so that the equations of Sections 1 and 2 tack the terms containing 

the functions q,, q, 0 and the constants X,, X,O. Relations (2.9) must also be omitted. Ap- 

proximate solution of the problem is simpler in this case, since its most complicated stage, 

i.e. the solution of the system of algebraic equations (Step 6) has been eliminated. Steps 

3 to 5 serve to determine the functions putt), u(t), and x t(t) uniquely. In other respects the 

solving procedure remains unaltered. 
Let us consider the problem of minimizing the functional 

I = i f, (X, u)df, f, (2, U) = f,” (I, u) + Ef*t&-., u) + * * * 
&I 

where f* is a given function. The equations and boundary conditions take the form (1.1) and 

(1.2) as before; expansions (1.10) remain valid. If f* ’ is independent of u, we introduce a 

new phase coordinate and a new functional by means of the relations 

dX*N = f, = f,” (J) + Ef*l (sf’, u) + . I ., 3”* (to) = 0, f, = J = x, (T) 
On the other hand, if fq” depends explicitly on u, we set 

dx, jdt = Ff* = &f*O (J, u) + . . .) r* (t”) = 0, 1, = d = x* CT) 

We increase by unity the dimensionality of the vector IC by adding to it the new compo- 
nent x *. The initial problem equivalent to that of minimizing the functional /+ then reduces 

to the case considered above (in Sections 1 and 2). By the procedure of Section 2 we can 

determine the minimum of the functional I+ to within an error on the order of E”. The error 

of the solution for the initial functional I is on the order of e2 if f&O is independent of u, 

and on the order of E if fee depends explicitly on a. 

The above method can be applied to the constmction of approximate analytic solutions 
of optimal control problems in the case of weakly controlled systems. Furthermore, the 
technique csu be used to obtain an initial approximation for subsequent solution of the prob- 
lem on a computer by various numerical methods, e.g. by the method described in [4l. In the 
latter case the parameter a need not be very small. 

It should be noted that problems of control of mechanical objects often involve the class 
of weakly controlled systems just considered, The parsmeter e characterizes the ratio of 
the controlled forces (e.g. the thrust of the craft) to the uncontrolled forces (e.g. the weic’ ti. 

The approach describe8ti.e. expansion in the small parameter) is also applicable to di 
ferential game problems provided the system is weakly controlled relative to one or both 
players. 

3. LOCPI O~tiRtitlftY., Since the first integrals (2.5) of the zeroth-approximation 

system are assumed known, they can be taken as the new required functions in system (1.1). 
ln other words, Eqa. (2.4) and (2.5) can be considered as direct and inverse transformations 
from the vector of variables z to the vector of new variables E; the vector c is considered 
constant in the zeroth approximation only. Such a transformation is often employed iu 
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celemtiJ mechmnicm, where the vuiablsm of tbe c type are cmlled ‘~omcnlmdng elementm”. 

Let am conmider the molation of Section 2 choosing as our phase coordinates the first 
integralm of the zero&approxfmetion system (i.e. the osculating varfabias E from (2.5)) and 
that there variables are denoted by ti mm before. The solving procedure of Section 2 then 
rem&a rutchanged, althoagb some dmplifications occasioned by the choice of phase COOP 
din&tern do nine. 

Since the new phase coordinates are identically constant in the zeroth approximation we 
mnat net pm 0 in the relatione of Section 2. Hers aa we see, the functions c$, g from (2.4) 

and (2.5) and matrices (2.7) are given by 

f0 z 0, cp (t, c) = c, g (57 t) = 5, CD (t, c) = G (t, c) = E (3.1) 

where E is a unit matrix. Relations (2.61, (2.81, (2.101, and (2.13) become 
tr 

20 (t) = u*, 51 (t) = ut + 
s 

ft (UO, 2, U (z)) dt 
0 

po (q = 8, (S, f’ (a’, t, U)) + SUP with respect to u E U (3.2) 

The remaining equations of Section 2 can also be simplified by substituting in them 
relations (3.1) and (3.2). 

Let as make two further assumptions. First, we assume that the boundary conditions 
q = 0 are lacking at the end of the process. As stated at the and of Section 2, this enables 
ae to omit in the equations of Section 2 all terms containing A,O and q,O and to simplify the 
solving procedure. Second, we assume that one of the two following conditions is fulfilled: 
either the function F” does not depend explicitly on t, or ha does not depend explicitly on 

2, i.e. the equation 

(dP/ at) (dh0 I 32) = 0 (3.3) 
is valid. 

Condition (3.3) is fulfilled, for example, if h(x. t) = t - T*, where T* is a given number, 
Then the instant T of termination of the process defined by condition (1.2) is fixed and 
equal to T, ; moreover, To = T, , T l= 0. 

Bearing in mind the above assumptions and Eqs. (3.1) to (3.31, we find A0 from relation 

(2.2) and then s from (2.1X), 

~0 = (ifP/at) (r?h”l dt)-‘, s = - dF” / ar for 2 = a”, 1 = To 

Let us substitute Eq. (3.4) into the last condition of (3.21, 

(3.4) 

(8, f’ (a”, t, u)) = - (8F” / ds, f” (a”, t, u)) = &-l (dF” / dt - dF0 / dt) (3.5) 
By virtue of Eq. (l.l), the total derivative here must be computed with allowance for 

terms of the first order of smallness, i.e. for f = Ef 5 Without reducing the accuracy of the 
solution (whose error is of a bigber order of smallness), we can replace this derivative by 
the derivative given by exact Eqs. (1.1). 

According to the last condition of (3.2) the approximate optimal control maximizes the 
left-band expression of (3.5). Since the derivative dF”/dt does not depend explicitly on a, 
by virtue of Eqs. (3.5) the control can be determined from the condition of minimality of the 
total derivative dF*/dt. 

The control which et each instant minimizes the rate of change dF”/dt of the functional 
F” being minimized is often called “locally optimal”. Thus, we have just shown that in a 
weakly controlled system a locally optimal control is, under the above conditions, an appro- 
ximately optimal control. In other words, the values of the functional for the exact optimal 
and locally optfmd controls differ by a quantity on the order of E*. 

Locally optimal controls are usually quite easy to find. It ia sufficient to write out the 
tQtd derivative dFo/d: as a function of the osculating variablea, the control, od time, and 
to find its mfnfmam with respect to a E u. The control is then obtained as a function of tbe 
oacaimting phmms coordinatea and poomibly of time, i.e. in synthetic form. After this the trr 



jsctory csn be determined either anaiytically (as in Sections 3 and 3) or b_r IXU~W&~ ~ht- 

tion of the Catchy problem. Owing to their Jmplidty locally optimal controls have been 
used on many occasions in solving 
(see the survey and bibliography in P 

robleme OIL controlled flights of low-throat spacecraft 
$1). The role of the zcroth approximatfon ia here played 

by the Keplerian motion; the ordinary osculating eiemanto serve aa the first intirgrala of the 
epuatidnn of the zeroth approximation. Locally optimal controls have allro bean ued aa ini- 
tial approximetion6 in numerical computations of optimal trajectorisa. The above reeuita in- 
dicate under whnt conditions and in what sense iocaiiy optimai~controis are, in fact, close 
to optimal contmia 

rl. Tht m~xftttam gifdfng rants ptoblsttt, To illustrate the generaI approach 
described in Section 2 fet as condder the followfag model probism solved nlrarerfaally in 
141. In aircraft (material point) is in plane motion fn tbe atmoephare. We denote ftr InftiJ 
velocity by uo, the conetaat acccleratioa dac to gravity by g, and the mass of the craft by 
m; we take the qnaatitialr 1 = volg’l, v&t, and m 8~ our nafta of lcs~gth,, time, snd mar% 
respectively. The relationships bctwcen the dimensionai and dfmensionicas variables are 
as fallows: 

t* zs V&g-%, xi l = IX<, Sj*=V@Zj, V* =V$? fi= i, 2; j=‘3;4) (4-Q 

Here t ie the time, x1 the horizontal coordinate (range), x1 the vertical coordinate (aiti- 
tuda), x3 and x , the horizontal aud vertical vciodty componenta, and u the average ~alss of 
tha velocity; the aate+s denote tha corresponding dimensional qusntitics. In addftfon to 
weight, the craft is acted upon by aerodynamic force% i.e. by the drag R snd the lift Y, 
which are given by 

R = ‘fs p*(v+)W*c,, Y = l/~~*~~~a~*~~ (4%31 

The drag R is directed opposite to the velocity of the craft; the lift Y is directed perpan- 
diculariy to it. Here p* is the density of the atmosphere, S* is the oharacterintfc sarface 
srca of the craft, and C, and C, arc acrodynsmic coefffcients which depend on the sugie of 
attach CC. Let the control be cffccted by varying the angle Q and the anrfaoe area S*, whloh 
csn sssume one of the two values S, * and S,*, where St+ < S,*. The latter q csns of control 
quslitativeiy simulates a change in wing geometry or au cxtenaion of fisps. 

Let us r&rite Eqs. (4.2), introducing the dimenoioniese variablce 

R = emgpv%W,, Y = emgpvVCy 

P - ;o: t -- s= -g f Po’vo~sl* 
e= 2mg (4.3) 

Here pa* ie tbe density of the atmosphere at the initial altftudc, p is the dimaneionleaa 
density* and S ia 5 dimensionicss qnsntity which aeacmce the vafucs St ~0 f snd S, - Sa*+$o 
> 1; the dimcnsioulers parameter e characterizea the ratio of the aerodynamic forces to the 
weight. Let PIN write out the equations of motion of the craft in dimenaionicss variables 
(4.11, projecting forces (4.3) on the axes x 1 and x1, 

$X4 
r = - i + epvS (t&x~ - f&q) (4.41 

WC specify the initial condition8 in the form 

r,= ;2, = 0, 2, = ~08 e,, 2, = sin e& for t = 0 P<%<n/21 14.51 
Here 8, is the given initial tilt suglc of the trajectory ithe initial valodty in the dimen- 

eionlcse varfablea ie equal to uafty). We pose the following variatfonai problem: to achieve 
the m&am flight (gliding) rtngc sf at tkc inetant when the altftude x2 is l gafn eqasl to 
zero. The contrafling fanctio-ae ere the angle of sttrck UM on whi&\C, cud C depend (we 
shall define this dcpendeacc below) and tke qusnmdty S(t) which aa*ame* the dI l crete valase 
St and 5 . ‘Whir probiam oonfonns to the general formulation of Section 1 provided th5 pars- 
meter .a 3 e mn4li fwhfch w5 io feet easwme tc bc tks c8a51. fir the not8tioa of Secttea 1 we 

hnva 
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h” = r,, h’ = 0, P=-q, F=O 

and the boundary conditiona q I 0 of (1.2) are lacking. The functions fkO and fkt are equal 
to the coefficienta of to and e in the right sides of ayrtem (4.4). We ahall now follow the 
general procedure of Section 2. 

1. We net e = 0 in Eqs. (4.4) and find the general solution of the zero&approximation 
system which deacrihes the system in the absence of drag. 

21 = c*t + cl* 20 = c,t + c, - P 1 2, 211 = CQ, z, = c, - f (4.6) 

The right sides of these equations are the functions q& of (2.4). Solving Pqs. (4.6) for 
the conrtants c, we obtain the first integrals (2.5) of the zero&approximation system 

81 = t1 - z.4, 8% = II - Z,t - P/2, g* = 2.9, g, = 21 + t 

Making nse of Eqa. (t.6) and (4.7). we construct matrices (2.7). 

1 0 t 0 10--t 0 

0 1 0 1 01 O--t 
CD= 

0010’ 
G= 

00 1 0 

0 0 0 i 00 0 I 

(4.7) 

2. The phase coordinates in zeroth-approximation (2.6) cau be found by determining the 
arbitrary conatantr in (4.6) with the aid of initial conditions (4.5). “,e obtain 

110 = t cos e,, 22O = t sinlO, - ta / 2, 280 = cos;e,, 2.0 = six& - I (4.8) 

Subatitnting solution (4.8) into the condition of termination of the process 3 = 0 and 
determining the time ‘lo, we obtain the minimized functional 10 (which is in our case equal 
to the range taken with the minus sign), 

To = 2:sin 6,, JO = -zl (TO) = -sin 20, 

3. Substituting the resulting solution into general relations (2.2). (2.10), and (2.11). we 
obtain, in emccesaion, X0, po, and s, 

A0 = --z+J (TO) / x.0 (TO) = ctg e,, s1= i, 8% = ctg e,, sg = To = 2 sin 0 0 
I. = TO ctg e. = 2 cos eo, PlO = 1, P?O = ctg,e,, pso = TO - t 

p40= ctg e,p---t) 

4. We now find from relation (2.12) that the controlling functions can be determined from 
the condition of maximality of the following exprendon with respect to a and S: 

epvS (TO - t) Ictl$, (Cy~SO - C,z(O) - (GzsO + CyzrO)l 

hbatitnting solution (4.8) into this expreedon and recalling that t\< To = 2sin8,, we 
can rewrite the above condition as 

(4.9) 

If no reatrictiona are imposed on the angle of attack a, then fulfillment of condition 
(4.9) reqnirea that the firat dedvative of Expreaaion (4.9) with respect to a equal zero. 
From thin we 5nd that 

C,’ (a) ain2&-ttos&3 
c;- oos280+tsin& (4.10) 

where the prime demotea the derivative with respect to a. 
The second derivative of (4.9) with reapact to a mnat be nonnegative. With the aid of 

Eq. (4.10) we cau rewrite thio condition aa 

c; - (Ci / c;) c; = C,’ (C,’ / c;)l > 0 (4.11) 

‘lima, the control a(L) can be determined from condition (4.9) by l adafying conditions 
(4.10) and (4.11). If oondidona (4.10) and (4.11) determine a uniquely, then this a ia the 
one required. Once a hu been found, the control S can be chosen in l ccordmce with the 



sign nf the coefficient of S in (4.9). With ailowsnca fat Eq. (4,10), we C8U eXpre%s the Con- 
dition for choosing S in the form 

S = S,* for A 2 0, S = S, > S1 for A < 0 A = C, - c, f&x‘ i c,‘) f4.12) 

Let us interpret condition (4.10) geometrically. Let 6(t) be the trajectory tilt angle with 

respect to the horizontal axis in the retoth-approximation. 

of 

the crsft, i-e. the polar curve in the plane C,, C,, Eq. (4,14) shows thet with an optimal 

angle of attack u(t) the tangent to the polar ourve of the craft at 8ny instant form8 the 8xt- 

gle 6 -+ f?, with the axis C,. 

T m8ke our computations specific Let us t8ke as our aerodynrtmic characteristics 

C,=l- co9 2a, co9 Za, C,, = K sin ?a0 sin 2a (4,lS) 

Here ao and K 8re constants. As we can readily verify, K is equal to the maximnm lift/ 
drag ratio (max(C,, I&‘,); a o is the angle of attack for which this maximum is achieved. t!t*- 

letions (4.15) 8re thoac taken in [4]. They have the following properties typical of aircraft: 
(1) the functions C, and C, are periodic in CL; (2) C,(U) is an even, and C,(U) an odd func- 
tion of a, which is the ease with symmetrical craft; (3) for small u the functions (4.15) 
have the usual farm C, = C, + CzaZ, C, = CJa, where C,, C,, and C3 ate constants. The 

polar curve of a craft having characteristics (4.15) is an elfipse. 

Substituting relations (4.15) into conditions (4.10) to f4,t2), we obtain 

To be specific, let us taLe u., < n/4, @o < n/4 (other cases c8tt be considered in the 
same way). Bearing in mind the inequality t ,< TO = [zsinc)o, we find from the first Eq. of 
(4.16) that tg 2a& 0. Recalling the second relation of (4.16)‘ we find that 0 S ZU 4 n/Z. 

The angle CI can be determined in the same way, and conditions (4.16) and (4.12) become 

(4.17) 

(S=S,for a<a,.S=S,nptia>a,) 

Thus, the controlling functions have been determined completely. According to (4.11) thtt 
angle a(t) increases monotonously from a(O) to R/4. The piecewise-continuous function 
S(g) clearly changes value (switches over) not more then once. At the end of the process, 
since a o < rr14* it 888ume8 its iatger value S,, If a(O) >,~o there is no switchover and S = 
= S, everywhere; if cz (0) < cza, then S = St over the initial portion of the trajectory. The 
larger lift,&tagratio K, the earlier the switchovtr and the Iarget the value essumed by the 

sttgie a at the same instant. 
The above results are in good agreement with those of 141, where the exact solution of 

the problem for tbc case of constant atmospheric denaity is obtained over s wide range of 
values (from 0.1 to 3) of the parluneters E and K. Comparison of the optimai control law 

a (t) from [4] for U, = 8, = 10’ with law (4.17) indicates that for E = 0.1 the two laws ptac- 
tically coincide; even for e = 0.5 the difference between them is about 10% over the entire 
range of K values, The instant of swftchovet defined by condition (4.17) is also in good 
agreement with the computed results (within approximately the seme error margin). 

Approximate analydc sointion (4.17) was obtained for an arbitrary dependence of atmos- 
pheric density on altitude. Specifying this dependence, we can readily u8e quadrature (2.8) 
to find the corraction for the trajectory due to aetodynemic faces. We note that the ttajcc- 
tory and functional are then determined to within an error on the order of 8 zr i.e. by one 

order of a more aecm~ately than the control. 
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