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Optimal control systems containing a small parameter which can be called weakly controlled
systems are considered. A procedure for the approximate solutions of problems of thia class
is described. A variational problem on the attainment of maximum gliding range by a craft
with serodynamic controls in the atmosphere is solved as an example. The results obtained
are in good sgreement with the exact numerical solution.

1. Formulation of the problem, Let the controlled process be described by a
system of differential equations with the initial conditions

dr/ dt = f(z, t, u), z(ty) = a 1.1
Here ¢ is the time, * = (x, ,u.s, %,) is the n-dimensional phase coordinate vector, u = (u ,,
vans U ) is the m-dimensionel vector of the controlling functions, f= (fy yuusy f,,) is & given
n-dimensional vector function, ¢, is the initial instant, and a is the vector of the initial
phase state. The conditions at the end of the process and the functional / to be minimized
are given in the form

h(z(T), T) =0, q((), =V, J=F@ED ) (12

Here h(x, ¢) and F (x, ¢) are given scalar functions; ¢{x, ¢} = {g,eeey q;) is & given redim-
ennional vector function, 0 7 <n — 1. The first Eq. of (1.2) is the condition which defines
the instant T of termination of the process. We assume that the function A depends monoton~
ously on ¢ (over some time interval) for the permissible trajectories x(t), and that the condi=
tion h = O defines a unique instant T for each permisaible trajectory. The second (vector)
equation of {1,2) impomes additional boundary conditions at the instant T (if r = 0, these con-
ditions are lacking). All these conditions are assumed to be independent and noncontradic-
tory.

Our problem conasists in determining the optimal control u(t) and the corresponding opti-
mal trajectory x(t) which for £ 9< ¢ K T satisfy Eqs. and conditions (1.1} and (1.2} as well
an the restrictions on the control u(t) & U, and which minimize the functional /. Here U is
a given closed set in m«dimensional space.

Let us introduce the additional phase coordinates x, and x,,, subject to the equations
and initial conditions

dzo/dt = fg, dxmxfdt = 1' Iy (ta) = 0, Ty (to) = {3
aF ar aF
fo=—d—:‘=='-°é;--{-(g,f) (1.3)

Here and below 3/3 = is the gradient operator over the phase coordinates x; d/dt is the
total derivative along the trajectories of system (1.1); the parentheses denote scalar products.

12
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It is clear that x4, =, so that the argument ¢ of the functions fi for B+ 9 snd F can be
replaced by %, , » which makes the system seli-contained. Functional (1.2) then takes the
form J = x4(T).

Let us apply the maximum principle [1] to the problem just formalated. Introducing the
vector of conjugate variables s/ (t) = ({/, ,..., ¥/, ) and the conjugate variables Y p 4 ((t) and
5(¢), we assume, as usual, that /5 = — 1. The Hamiltonian “ and the conjugate equations
for systems (1.1) and (1.3) become

H =, f) + $na—fo=(9—0F |0z, /) + Yo —0F /0t (1.4)
BH’ aF  3f »F 8 oF
%‘z——z‘“(‘p—ggvﬁ)'*[mﬁ*(mg;,f” (k=1,...,m)

With allowance for boundary conditions (1,2} (the instant of termination of the process
has not been fixed), we can write the transversality conditions in the form

r r
oh g oh 9 ’
\P———-la—z-}-éh-a%, \Pm:x‘a?‘*'ig}‘*a_:' H =0 (1.5)

Here A and A, are constant parameters. Let us substitute Conditions (1.5) into Eq. (1.4)
for H” and then solve the latter for A;

L == (“;—f - i-é‘ 7&; %’.{_.) (%’:—)—1 for t=T (1'6)

The total derivatives have the same meaning here as in Eq. (1.3). We now introduce the
notation

p=v— 0F[dz, H = (p, f) = H' — Pru + OF [ 8t, p = (P1se-es P») (17)

The expression in square brackets in (1.4) is equal to d(3F/dx,)/d¢t. Eqs. (1.4) and con-
ditions (1.5) with allowance for (1.7) can be written as

dp, af 8H
a ( ’axk)""" o H=(p 1)
oh | <. %4 oF
p == A yry + i_El; kl —-—-—a; —_— 3_1: for t=1T ({8)

By applying the maximum principle we have reduced the optimal control problem to a
boundary value problem for the two n-dimensional vector functions x(t) and p(¢). The control
u{t) can be found from the supremum condition for the function H” with respect to u. This
is equivalent to the supremum of the function H from (1.8), i.e. to

Hp@nz@)tu@)= Sup H(p ), z(@), ¢ u 1.9

The system of equations of the boundary value problem consists of Egs. (1.1) and (1.8},
and the boundary conditions of Egs. (1.1}, (1.2) and {1.8), The control u can be eliminated
by means of Eq. (1.9).

The parameter A is defined by Eq. (1.6); the instant T and the parameters A, are unknown
and must be determined in the course of solving the problem.

Let us expand the functions f, h, g, and F and the vector a in series in the small parame-
ter e,

f=7 t)+eft(z, t, u)+ ..., h=hr(z, t)+ eh' (z, t) +...
g=q(z, t) +eq(z, ) +...,. F=F(z, t) +eF(z, t)+ ...
a = a® + eat + ... (e<€1) (1.10)

The superscripts in all cases denote the number of terms in the expansions; the sub-
scripts denote the number of vector components. Since the function f does not depend on u
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for £ = 0, system (1.1) is uncontrolled when & = 0. We will assume that its general solution
is known. It is natural to call system (1.1) for 0 < € K 1 a ““weakly controlled’’ system. In
the next section we shall construct an approximate solution of the above optimal control

problem for a weakly controlled aystem.

If the function f° depends on u, then the system does not degenerate into an uncontrole
led system for € = O and there generally exists an optimal control of the zeroth approxima-
tion. Expansion in the small parameter serves merely to refine this control. The case con-
sidered in the present paper (where the system is uncontrelled for & = 0) is interesting in
that the control in the zeroth approximation cannot be determined in principle. An interme-
diate case is also possible: this is where the function f® depends only on certain compo-
nents of the vector of controlling functions.

We note also that if the set U depends on x, ¢, and €, then in a pumber of cases it can
be transformed into a constant set by simple transformation in the control space. The set U
defined by the inequality ‘u £ Cx, t, &) (where C is a known function), for example, can
be transformed into the set u'l £ 1 by means of the transformation u = Cu”. From now on

we shall assume that the set U is constant.
Neither the problems involved in constructing strict estimates of the error of the appro-

ximate solution nor the existence and uniqueness of this solution will be considered in the
present paper.

2. The approximate solution. We shall attempt to find the solution of the above
problem and the functional / for € < 1 in the form 2.1)
z=20)+ext () +..,p=p"(@) +ep )+ ..., T=T"+el" +..
A=A oM oy A=A ekt o, S =T eI (im0,

Substituting Egs. (2.1) and (1.10) into Egs. (1.1), (1.2}, (1.8), and (1.6) we expand the
resulting expressions in series in & and equate the coefficients of £0 and €1, In the
zeroth approximation we have

dr0jdt = [0(20, 1), 2°(ty) = a0, AO(20(T%), T =0, ¢°(z®(T%), T% =0

JO = Fo (0 (T9), To) (2.2)
Py’ 30 (= (1), 1) ) i dq,0
at = "“(po' 3z )’ Mt 2 Mo~ e ax

b= {2 (2 )= e [aq‘ (a“' 5+ G )
for t—T0 (k=1,...,n)

We also write out the equations of the first approximation for Eqs. (1.1) and (1.2) (we
make use of relations (2,2) obtained above in constructing these equations),

dz.} of 2 (= (1) ¥)
o (EEOD ) e, tu, 2=

{Qg+(%’:’fo)}T‘+(%g,x‘(T“))+h1=0

at
[Z 4 (%2, )] 7o+ (%, 22 (o) + g = (2.3)
P=[G+ (G )1+ (5= ‘(T°>)+F‘
i=1t,....r)

In the last three Egs. of {2.3) all the functions of x and ¢ are taken for the values v =
= x0(T9%), t = TO,
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Now let us analyse Egs. (2.2) and (2.3). We assume the general solution for the zeroth-
approximation system dx/dt = fO(x, t} of (2.2) to be known and to be given in the form
z=09( o @ = ®n)y ¢ = (c1,-er Ca) (2.4)
Here @ is a vector function and ¢ is & vector of arbitrary constants. Solving Eqs. (2.4)
for the constants ¢, we obtain
gz, t) =c¢ (g = Bryeees gn) (25)
The functions g, are the independent first integrals of the zeroth-approximation system,
For the trajectory in the zeroth approximation we have Cauchy problem (2.2) whose sol-
ution can be expressed in terms of the functions ¢ and g introduced by way of Eqn. (2.4)
and (2.5),
2 (1) =9 (¢, o), ¢c=g(a’ 1) (2.6)
The instant 70 of termination of the process and the functional J® in this approximation
are given by the third and fifth Eqs. of (2.2). We shall assume that the fourth Eq. of (2.2},

i.e. the boundary conditions ¢ = 0, are fulfilled automatically in this approximation. This
equation can be considered as an additional condition imposed on the function ¢° (x, ¢).

Let us introdnce the following n x n matrices:

@ (t, c) =

a—(p—'ﬂ, G(t,c)=

2%, “ f 2.7y
ac, 5}—; or r =0 (L, c) (2.

Egs. (2.4) and (2.5) define transformations which transform the vector ¢ into x, and vice-
versa. Matrices (2.7) which are the Jacobi matrices for these mutuslly inverse transforma-
tions, are related to each other by the expression ® = G-1, The rank of both matrices in a.

The function x! satisfies linear homogeneous system (2.3). The corresponding homage-
neocus system is & system in variations for zeroth-approximation system (2.2) satisfied by
%9, As we know from the theory of differential equations, the matrix P of (2.7) is the funda-
mental matrix for the aystem in variations. Making use of this fact, let us write out the
general solution of inhomogeneous system (2.3) by the method of variation of arbitrary con-
stants N

t
B=0, )b+ 0, 0§ O1(r, o) (2 (1), 7, u(x)dr
to

Determining the vector b of arbitrary constants with the aid of initial condition (2.3) and
making use of the Eq. 1= G, we obtain

H
z (1) =D, c) G, c)a' + D2, C)SG{t, )1 (z° (%), v, u(r)) dv (2.8)
s
Let us also express T! from the third Eq. of (2.3) and then substitute it into the fourth
Eq. of (2.3),

[(%58 2tam) + 03] G+ (3 1)) = [(B2 = ) 4 ]
(3 ()] o=t 29

As is evident from (2.2), the vector p® satisfies the linear homogeneous system conju-
gate to the above system in variations. But then, as we know [2], the fundamental matrices
for this system is («1)"= G*, where the prime denotes the transposed matrix. Hence, the

general solution of system (2.2) for p° (in vector and scalar notation) is of the form
n

R d;
=Gt o)s, pkozzé‘%s‘, S == (S1r...r8) (E=1,...,n)(2.10)

-
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Here s is a vector of arbitrary constants. Substituting solution (2.10) into condition (2.2)
for p© and taking account of the Eq. (G“)*1=® ", we obtain

0y 0 00
s=a @G+ I 5] wa=r @)
ta=}

Now let us determine the control in the first approximation (the system is uncontrolled
in the zeroth approximation). Substituting expansions (1.10) and (2.1) into the function H
from (1.8), we expand this function in a seriesin €,

H= (o, h= @ P& ) +e[(p B Ead)+ @ 1 ) +
iwl

+(p" (2% ¢, u))] 4+ ...

The three dots denote terms of order higher than the first. Of the terms written out above
only the last depends on u. Hence, the determination of the maximum of H with respect to
u reduces in the first approximation to the maximization of this last term, i.e. to

®° (), f (20), ¢, u(®)) = sup (P°W), f (=° (¥), t, w)) @EV) (2.12)

The control ul(t) defined by relation (2.12) need not lie close to the control optimal in
the metric sense in the space of C (i.e. with respect to the maximum of the difference modu-
lus). However, this control will be approximately optimal in the senae of the functional to
be minimized. In fact, the familiar formulas for the first variation of the functional 3 imply
that the functionals for two different controls differ by an amount of the same order as the
functions H for these controls. But if condition (2.12) is fulfilled, the function # for the con-
trol u(t) will differ from the maximum of the function H attained in choosing the optimal con-
trol by an amount of the same order as the rejected terms, i.e. by an amount on the order of
£2, The difference with respact to the functional between the approximate and optimal con=
trols will be of the same order of magnitude. The difference in norm between these controls
in the space L,, i.e. the mean-square error, will usually be on the order of €.

We note that in accordance with {2.12) the control u(t) depends only on the solutions
x0(¢) and pO(2) of the zeroth approximation. Substituting in solation (2.10), we can rewrite
condition (2,12} as

n ag
(G's, ©y = 2 #s,jﬁ (2° (), t, u) —>sup with respect to uc U (2.13)
i, j=t 7

The resulting relations enable us to obtain an approximste solution of the optimal control
probiem under investigation. Here the trajectory x(t) as well as the instant T and the func-
tional / will be determined in the first approximation (with allowance for two tems in expan-
sions (2.1), i.e. to within ~~g?); the conjugate variables p(t) and the constants A and A,
will be found in the zeroth approximation. The subsequent terms of expansions (2.1) are
too small to be of much interest.

Finding the approximate solution involves the following steps:

1. Finding the general solution of the zeroth-approximation system, i.e. finding the
functions @, g of (2.4) and (2.5) and the matrices @, G of (2.7).

2. In the zeroth approximation the trajectory 22 (s) is defined by Eqs. (2.6). The instant
T° and the functional J© are defined by the third and fifth Eqs. of (2.2). The fourth Eq. of
(2.2) is assumed to be fulfilled by hypothesis.

3. The function p?(t) is defined by Eqs. (2.10) and the vector s by Eq. (2.11) into which
we must substitute A% from (2.2). The right sides of Eqs. (2.11) and {2.2) must be taken for
x = 59(T9), t = T9, Thus, Eqs. (2.10), (2.11), and (2.2) define the function p®(s) to within »
arbitrary constants A, % which will be determined below.

4. Substituting x%(¢) and p A¢) into condition (2.12) or (2.13) and computing the supremum
with respect to u, we obtain the control u(t) also to within r unknown constants A;%.
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5. We substitute x0(z) and u(s) into Eq. (2.8) and find x }{t), and in particular x (79}, to
within the same constants.

6. We then substitute ¢t = 79, x = x0(79) and the resulting value into relations (2.9),
This yields r algebraic (generally nonlinear) equations for the constants A 0 appearing in
x1(T9). Solving these equations (we assume that a solution exists), we find the constants
A0 The functions p0(2), u{t), x1(¢) and the constant A? determined in Steps 3 to 5 have now
been determined completely.

7. The corrections T'! for the instant of process termination and J ! for the functional
can be found consecutively from the third and fifth Eqs. of (2.3) by substituting in them the
already known values of x = x%(T9), ¢ = T9, and x}(T0).

Let us consider the solution of our problem for the case where the boundary conditions
g =0 {except the condition A = 0 which serves to define the instant of termination of the
process) are lacking at the end of the process. In this case the dimensionality r of the vec-
tor ¢ of {1.2) is zero, so that the equations of Sections 1 and 2 lack the terms containing
the functions g, ,° and the constants A;, A% Relations (2.9) must also be omitted. Ap-
proximate solution of the problem is simpler in this case, since its most complicated stage,
i.e. the solution of the system of algebraic equations (Step 6) has been eliminated. Steps
3 to 5 serve to determine the functions p9(¢), u(t), and x 1(z) uniquely. In other respects the
solving procedure remains unaltered.

Let us consider the problem of minimizing the functional

T

I= § fe vy m)dt,  fo@u)=f"@w)+efl (@ u)+ ..

1y

where fs is a given function. The equations and boundary conditions take the form (1.1) and
{1.2) as before; expansions (1.10) remain valid. If fo? is independent of u, we introduce a
new phase coordinate and a new functional by means of the relations

doy 1t = fo =120 (@) + e @ )+ o 2y () =0, Jy =J =2,(T)
On the other hand, iff:-o depends explicitly on u, we set
dr,/dt =ef, =ef 0 (a, u)+ ..., 2, (L) =0, Jy =eJ =z, (T)

We increase by unity the dimensionality of the vector x by adding to it the new compo-
nent x ». The initial problem equivalent to that of minimizing the functional /4 then reduces
to the case considered abave (in Sections 1 and 2). By the procedure of Section 2 we can
determine the minimum of the functional Jo to within an error on the order of £2, The error
of the solution for the initial functional J is on the order of €% if f,0 is independent of u,
and on the order of € if f.0 depends explicitly on u.

The above method can be applied to the construction of approximate analytic solutions
of optimal control problems in the case of weakly controlled systems. Furthermore, the
technique can be used to obtain an initial approximation for subsequent solution of the prob-
lem on a computer by various numerical methods, e.g. by the method described in [4]. In the
latter case the parameter & need not be very small,

It should be noted that problems of control of mechanical objects often involve the class
of weakly controlled systems just considered, The parameter e characterizes the ratio of
the controlled forces (e.g. the thrust of the craft) to the uncontrolled forces (e.g. the wei ' th.

The approach described (i.e. expansion in the small parameter) is also applicable to di
ferential game problems provided the system is weakly controlled relative to one or both
players.

3. Local optimality. Since the first integrals (2.5) of the zeroth~approximation
system are assumed known, they can be taken as the new required functions in system (1.1).
In other words, Eqgs. (2.4) and (2.5) can be considered as direct and inverse transformations
from the vector of variables x to the vector of new variables ¢; the vector ¢ is considered
constant in the zeroth approximation only. Such a transformation is often employed in
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celestial mechanics, where the variables of the ¢ type are called “osculating elements’’,

Let us consider the solution of Section 2 choosing as our phase coordinates the first
integrals of the zeroth-approximation system (i.e. the osculating variables ¢ from {2.5)) and
that these variables are denoted by » as before. The solving procedure of Section 2 then
remains unchanged, althongh some simplifications occasioned by the choice of phase coore
dinates do arise.

Since the new phase coordinates are identically constant in the zeroth approximation we
must set fOm O in the relations of Section 2. Herey as we see, the functions ¢, g from (2.4)

and {(2.5) and matrices (2.7) are given by
=09t o =c gl t)=2z O, c)=G{, ¢c)=EFE (3.1)

where E is a unit matrix. Relations (2.6}, {2.8), (2.10), and {2.13) become
1

Z0(t) = a% z'(t) =a'+ \ f1(a° 7, u(r))dt

p(t)=s, (s, f1(a® t, u)) —>sup with respect tou & U (3.2)

The remaining equations of Section 2 can also be simplified by substituting in them
relations (3.1) and (3.2},

Let us make two further assumptions. First, we assume that the boundary conditions
¢ = 0 are lacking at the end of the process. As stated at the end of Section 2, this enables
us to omit in the equations of Section 2 all terms containing A, and ¢,° and to simplify the
solving procedure. Second, we assume that one of the two following conditions is fulfilled:
either the function F? does not depend explicitly on ¢, or A% does not depend explicitly on
%, i.e. the equation

(3F% 3t) (0h° / 8z) = 0 (3.3)
is valid.

Condition (3.3} is fulfilled, for example, if Alx, ¢} = ¢t — T4, where Ty is a given number,
Then the instant T of termination of the process defined by condition (1.2} is fixed and
equal to T, ; moreover, T0=T,, T1= 0.

Bearing in mind the above assumptions and Egs. (3.1) to (3.3), we find A® from relation
{2.2) and then s from (2.11),

A0 = (AF°/9t) (OR%/ 3t)-', s = — OF°/ gz for z=ad t=T" (3.4)
Let us substitute Eq. {3.4) into the last condition of {(3.2),
(8, 1 (a% t,u)) = — (BF°/ dz, f* (a° t, u)) = e (3F°/ 3t — dFo/ dt) (3.5)

By virtue of Eq. (1.1}, the total derivative here must be computed with allowance for
terms of the first order of smallness, i.e, for f= &f § Without reducing the accuracy of the
solution (whose error is of a higher order of smallness), we can replace this derivative by
the derivative given by exact Eqs. (1.1).

According to the last condition of (3.2) the approximate optimal control maximizes the
left-hand expression of (3.5). Since the derivative JF0/9t does not depend explicitly on u,
by virtue of Eqs. (3.5) the control can be determined from the condition of minimality of the
total derivative dF9/dt.

The control which at each instant minimizes the rate of change dF%/dt of the functional
FO being minimized is often called *‘locally optimal’’. Thus, we have just shown thatin a
weakly controlled system a locally optimal control is, under the above conditions, an appro-
ximately optimal control, In other words, the values of the functional for the exact optimal
and locally optimal controls differ by a quantity on the order of £2.

Locally optimal controls are usually quite easy to find. It is sufficient to write out the
tatal derivative dF0/dt as a function of the osculating variables, the control, snd time, and
to find its minimum with respect to u €& U. The control is then obtained as a function of the
osculating phase coordinates and possibly of time, i.e. in synthetic form. After this the tra-
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jectory can be determined either analytically {as in Sections 2 and 3) or by numerical solu-
tion of the Canchy problem, Owing to their simplicity locally optimal controls have been
used on many occasions in solving problems on controlled flights of low-thrust spacecraft
{see the survey and hibliography in fS]). The role of the zeroth approximation is here played
by the Keplerian motion; the ordinary osculating elements serve as the first intégrals of the
equations of the zeroth approximation, Locally optimal controls have also been used as ini-
tial approximations in numerical computations of optimal trajectories. The above results in-
dicate under what conditions and in what sense locally optimal controls are, in fact, close
to optimal controls.

4. The maximum gliding range problem. To illustrate the general approach
described in Section 2 let us consider the following model problem solved numerically in
[4]. In aircraft {material point) is in plane motion in the atmosphere. We denote its initial
velocity by v,, the constant acceleration due to gravity by g, and the mass of the craft by
m; we take the quantities [ = v %!, vog°l, and m as our units of length, time, and mass,
respectively, The relationships between the dimensional and dimensionless variables are
as follows:

=g Y, w*e==lzy, rtosvery, v*=—vee ((=1,2 =3, 4) “4.1)

Here ¢ is the time, x, the horizontal coordinate (range), x, the vertical coordinate (alti-
tude), x4 and x , the horizontal and vertical velocity components, and v the average value of
the velocity; the asterisks denote the corresponding dimensional quantities. In addition to
weight, the craft is acted upon by aerodynamic forces, i.e. by the drag R snd the lift Y,
which are given by

R =1, p¥v*)35*C,, Y = Yap¥(v*)35%C, (4.2)

The drag R is directed opposite to the velocity of the craft; the lift ¥ is directed perpen-
dicularly to it. Here p* is the density of the atmosphere, §* is the charscteriatic surface
area of the craft, and C, and C, are aerodynamic coefficients which depend on the angle of
attack a. Let the control be effected by varying the angle & and the surface ares §%, which
can assume one of the two values S, * and §,*, where §,* < §,°. The latter means of control

qualitatively simulates a change in wing geometry or an extension of flaps.
Let us revirite Egs. (4.2), introducing the dimensionless variables

R == emgpv*SCy,, Y =emgpviSC,
p* S Po®votSy*
p= —.—PO' » 8o ““‘SI. y £ == =2 2’:38' 2 (43)

Here py* is the density of the atmonsphere at the initial altitude, p is the dimensionlesa
density, and § is a dimensionless quantity which assumes the values S, = 1 and S, = S,*/5¢*
> 1; the dimensionless parameter & characterizes the ratic of the aerodynamic forces to the
weight, Let us write out the equations of motion of the craft in dimensionless variables
(4.1), projecting forces (4.3) on the axes x ; and x,,

dzy dxy dzs
= =™ q =T g = 2prS (Cxxs -+ Cymi)

dx;
—a—r = + eva (Cvrs—* Cxx‘) (4'4}

We specify the initial conditions in the form
Ty=123=0, zg=10c080), z,=sinb for t=0 (0B <x/2}Y (45)

Here 8, is the given initial tilt angle of the trajectory (the initial velocity in the dimen-
sionlesa variables is equal to unity), We pose the following variational problem: to achieve
the maximum flight (gliding) range x, at the instant when the sltitude x, is again equal to
zero. The controlling functions are the angle of attack a{t) ou whichiC, and C_ depend (ws
shall define this dependence below) and the quantity 5(¢) which assumes the dfacretc valnes
S, and S,{ This problem conforms to the general formulation of Section I provided the pars-

z:eter & Is small {which we in fact assume to be the case). In the notation of Section 1 we
ave
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A = z,, h =0, FO= —gz,, n=g0
and the boundary conditions ¢ = 0 of (1.2) are lacking. The functions f, % and 4 ! are equal
to the coefficients of €0 and & in the right sides of system (4.4). We shall now follow the
general procedure of Section 2.
1. We set & = 0 in Eqs. (4.4) and find the general solution of the zeroth-approximation
system which describes the system in the absence of drag.
z, = gt + ¢4, Zo= ¢t + ¢g — 12/ 2, Ty = cg, Zg =g — ¢ (4.6)

The right sides of these equations are the functions ¢, of (2.4). Selving Wgs. (4.6) for
the constants ¢, we obtain the first integrals (2.5) of the zeroth-approximation system

B =3 — XTgl, g3 = T3 — T4 — 32, gy= z3, g =zt ¢ (4.7)
Making use of Eqs. (4.6) and (4.7), we construct matrices (2.7),
1 0 ¢ O 1 0 —¢ 0
01 0 ¢ 0 1 0 —t
®=lo 0 1 of" Tloo t o
0 0 0 1 0 0 0 1

2. The phase coordinates in zeroth-approximation (2.6) can be found by determining the
arbitrary constants in (4.6) with the aid of initial conditions (4.5). ™e obtain
20 = tcosB,, 0 =tsin®, — 12/2, =z = cosB,, z°= sinf, —¢ (4.8)
Substituting solution (4.8) into the condition of termination of the process x, = 0 and
determining the time 79, we obtain the minimized functional J© (which is in our case equal
to the range taken with the minus sign),
T° = 2sin 6, JO = —z, (T°) = —sin 20,
3. Substituting the resulting solution into general relations (2.2), (2.10), and (2.11), we
obtain, in succession, A%, p0, and s,
A0 = — 240 (T9) / 20 (T®) = ctg B, 5 =1, s =ctg B, s3= T°= 2 sin6,
s, = TOctgf, = 2cos6,, =1, p° = ctg 0, p® = T® — ¢
pd = ctg 6, (T° — )
4. We now find from relation (2.12) that the controlling functions can be determined from
the condition of maximality of the following expression with respect to @ and §:

epuS (T° — t) [ctghy (Cyzs® — Cx2d®) — (Cx2s® + Cyzd)]
Substituting solution (4.8) into this expression and recalling that t < T0 = 2sin 90, we
can rewrite the above condition as
c0s 200 4 ¢ sin By . .
R} I-Cx— Cy (m)] — min with respect to a, § 4.9)
If no restrictions are imposed on the angle of attack a., then fulfillment of condition
(4.9) requires that the first derivative of Expression (4.9) with respect to a equal zero.
From this we find that
Cy (%) _ 8in26— tcosby
Ce (@) c0s 20, 1 t sin By
where the prime denotes the derivative with respect to a.

The second derivative of (4.9) with respect to @ must be nonnegative. With the aid of
Eq. (4.10) we can rewrite this condition as

Cx* — (Cx' 1 Cy) C)" =Cy (Cx' | CyY =0 @&.11)
Thus, the control a (¢) can be determined from condition (4.9) by satisfying conditions

(4.10) and (4.11). If conditions (4.10) and (4.11) determine a uniquely, then this @ is the
one required. Once @ has been found, the control S can be chosen in accordence with the

(4.10)
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sign of the coefficient of S in (4.9). With allowance for Eq. {4.10), we can express the con-
dition for choosing S in the form
S=Syfor A>0, S=5,>8, for A0 A=¢( — Cy (€1 €Y {4.42)
Let us interpret condition (4.10) geometrically. Let O(r) be the trajectory tilt angle with
respect to the horizontal axis in the zeroth-approximation. By (4.8) we have

tg0 = zl/ a0 = (sin 8, — ¢t} / cos 8, (4.13)
It is not difficult to verify that Eq. {(4.10) with allowance for (4.13) can be written as
Cy 1€ =1g (8 + 8) (4.14)

The functions €, (@) and C,la} define parametrically the equation of the polar curve of
the craft, i.e. the polar curve in the plaze C,, C,. Eq. {4.14) shows that with an optimal
angle of attack a {¢) the tangent to the polar curve of the craft at any instant forms the an-
gle A+ 8, with the axis C_.

T make our computations specific let us take as our aerodynamic characteristics

Cy = 1 — cos 2a, cos 2a, C, = K sin 2a, sin 2a {(4.15)

Here aq and K are constants. As we can readily verify, K is equal to the maximam lift/
drag ratio (max(C, /C,); @, is the angle of attack for which this maximum is achieved. He~
lations (4.15) are those taken in [4]. They have the following properties typical of aircraft:
(1) the functions C, and €, are periodic in a; (2) €, (@) is an even, and C (a) an odd func-
tion of &, which is the case with symmetrical craft; (3) for small o the functions (4.15)
have the usual form € =C, + Czaﬁ, Cy= C,a, where C,, C,, and C; are constants. The
polar curve of a craft having characteristics (4.15) is an ellipse.

Substituting relations {4.15) inte conditions {4.10) 10 (4,12}, we obtain
c0s 260, + £ 5inGe cos 2e €05 2aq
sin 28, — tcos By cosia =0 A=t —e

To be specific, let us take a5 <7/4, O < 7/4 (other cases can be considered in the
same way). Bearing in mind the inequality ¢ £ T% = 2sinfl,, we find from the first Eq. of
{4.16) that tg 20 3 0. Recalling the second relation of {4.16), we find that 0K 2a /2.
The angle & can be determined in the same way, and conditions (4.16) and (4.12) become

cos 20 + £ 8in B )
sin 28g — t cos By

tg2a=Ktg 2z {4.16}

1
x(t)= - aretg (K tg 2a0 (447

(§ = Sy for a<Cay, §=5, nppa > a,)

Thus, the controlling functions have been determined completely. According to (4.17) the
angle c.(t) increases monotonocusly from a{0) to #/4. The piecewise-continuous function
8(:) clearly changes value (switches over) not more than once. At the end of the process,
since (L4 < u/4, it assumes its larger value Sy 1t a {0} >, there is no switchover and §=
=5, everywhere; if a (0} < a,, then § = 5, over the initial portion of the trajectory. The
larger lift/drag ratio K, the earlier the switchover and the larger the value assumed by the
angle 0 at the same instant.

The above results are in good agreement with those of [4], where the exact solution of
the problem for the case of constant atmospheric density is obtained over a wide range of
values (from 0.1 to 3) of the parameters & and K. Comparison of the optimal control law
a (¢) from [4] for ay = 6, = 10° with law (4.17) indicates that for & = 0.1 the two laws prac-
tically coincide; even for & = 0.5 the difference between them is about 10% over the entire
range of K values. The instant of switchover defined by condition (4.17} is also in good
agreement with the computed results (within approximately the same error margin).

Approximate analytic solution (4.17) was obtained for an arbitrary dependence of atmos~
pheric density on altitude. Specifying this dependence, we can readily use quadrature {2.8)
to find the correction for the trajectory due to aerodynamic forces. We note that the trajec~
tory and functional are then determined to within an error on the order of €2, i.e. by one
order of & more accurately then the control.
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